0%

这篇文章读下来,感觉就是一个tricks的集大成,作者实验做的可是真的很详细,好多trick我都没有听过,我看网上有人评论说,可以当做目标检测的入门手册了,哈哈,确实,能做如此多的实验,足见作者的功底。总体来说,文章的创新点不是特别多,大多是在试各种tricks,然后找到效果最好的,文章值得好好的读一读。

阅读全文 »

本篇论文是亚马逊MXNet团队的又一力作,目前预训练模型已经在MXNet官网上面公布,从效果上看,网络的精确度提升还是很明显的,实现了较好的speed与accuracy的trade-off。精度提升的点主要在于两方面,一方面resnest使用了前面MXNet团队总结的训练模型的tricks,另一方面设计了split-attention block结构,在并没有改变resnet原始结构的情况下,提高了网络的识别能力。并且ResNeSt可以轻易的移植到其他的使用resnet作为backbone的任务中,比如目标检测、分割、姿态估计等,非常方便。

阅读全文 »

本篇论文是发表于CVPR2020的一篇轻量级网络的论文,作者是华为诺亚方舟实验室,文章的总体思路比较清晰,为了减少网络计算量,作者将传统的卷积分成两步进行,首先利用较少的计算量通过传统的卷积生成channel较小的特征图,然后在此特征图的基础上,通过cheap operation(depthwise conv)再进一步利用较少的计算量,生成新的特征图,最后将两组特征图拼接到一起,得到最终的output,最终实验效果还不错,相同计算量的情况下比MobileNet- V3的效果还要更好一些。

阅读全文 »

这篇文章是ECCV2017一篇比较经典的人脸检测的文章,是一篇很实用的针对小脸优化的文章。读下来,文章并没有提出特别牛逼的理论或者网络,而是在SSD的基础上,进行了针对小脸的一系列优化,最终实现了对小脸检测效果的提升,相比于提出高大上理论的论文,本篇论文中提出的方法更容易实用到实际项目中,产生收益,特别是针对小目标,文章中的方法值得借鉴,我喜欢这种文章。

阅读全文 »

Resnet是2015年ImageNet比赛的冠军,不仅在分类上标线优秀,在目标检测中同样取得好成绩,Resnet将网络层数进一步加深,甚至达到1000+层。ResNet的表现以至于后面的网络都是在其基础上进行修改得到的,可以说ResNet是一个划时代的网络,被广泛应用于工业界。

下面简单介绍一下这个网络。

阅读全文 »

本篇文章是CVPR2019的一篇Anchor-Free的文章,是一篇很好的Anchor Free的目标检测的文章,目前基于anchor的目标检测方法,大多采用不同的level预测不同尺度的instance,而分配规则往往是人为设计的,这导致anchor的匹配策略可能不是最优的。那有没有更优的匹配方法?文章从level选取的点进行切入,利用FASF实现不同的instance在不同level的动态分配,实现了level的动态选择,并且anchor free方法取得了较好的mAP,另外作者设计了anchor free跟anchor-based相结合的方法,进一步提升模型效果,取得了可观的结果。

阅读全文 »

很多时候,外界同学管深度学习算法工程师叫做调参工程师,简单直接的概括了深度学习工程师的工作,搞深度学习的同学自己也经常自嘲,称自己的工作是炼丹,的确,深度学习模型有时候确实很奇妙,而调参在一个模型的优化中起着至关重要的作用,正因为如此,也有越来越多的研究放在了调参这件事上,比如:学习率的优化算法,模型初始化算法等等。
其实,拿一个别人已经训练好的模型(比如ImageNet上预训练的ResNet),直接在自己的数据集上进行finetune,不需要怎么调参,一般都会得到不错的效果,这就是站在巨人的肩膀上,但是如果想继续提高模型的精度,该怎么做?继续调参?还是有一些其他的方法可以采用?本篇文章就介绍了Amazon工程师总结的分类模型的调参技巧。

阅读全文 »

YOLO9000是继YOLO之后的又一力作,本篇论文,其实作者在YOLO v2上并没有特别多的创新的方法,更多的是将现有的多种方法使用在自己的YOLO中以提高识别效果,不过YOLO9000倒是很有创新点,利用ImageNet与COCO数据,使得网络可以检测9000类数据,下面简要介绍一下这两个网络:

首先介绍YOLO v2都使用了哪些方法:

阅读全文 »

本篇文章是一篇anchor free的目标检测方法,主要是在CornerNet(该篇文章很经典,还没总结,后面补上)的基础上发展而来。文章的主要思想在于:CornerNet中只检测目标的左上角点和右下角点,bounding box错检率会比较高(即检测出目标框但是与目标重合比较少,这也是keypoint检测的常见问题),作者分析错检的主要原因在于——-在进行Corner检测的时候,没有关注bounding box内部的内容信息,所以作者提出了CenterNet,在利用CornerNet检测出bounding box,同时,在bounding box内部检测center keypoint来帮助过滤掉错检框,也就是文章标题所示的Keypoint Triplts,检测三个点,同时,作者提出了center pooling以及cascade corner pooling方法,center pooling用于检测center keypoint,cascade corner pooling用于加强原本corner point的检测,使得corner的检测的时候可以get更多的bounding box内部的内容信息。结果是该网络也取得了精度和召回的双重提升,在COCO上测试,mAP可以达到47%,52-layer hourglass 耗时大约在270ms.

阅读全文 »